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When forecasting events, multiple types of uncertainty are often inherently present in the 
modeling process. Various uncertainty typologies exist, and each type of uncertainty has 
different implications a scientist might want to convey. In this work, we focus on one type 
of distinction between direct quantitative uncertainty and indirect qualitative uncertainty. 
Direct quantitative uncertainty describes uncertainty about facts, numbers, and hypotheses 
that can be communicated in absolute quantitative forms such as probability distributions 
or confidence intervals. Indirect qualitative uncertainty describes the quality of knowledge 
concerning how effectively facts, numbers, or hypotheses represent reality, such as 
evidence confidence scales proposed by the Intergovernmental Panel on Climate Change. 
A large body of research demonstrates that both experts and novices have difficulty 
reasoning with quantitative uncertainty, and visualizations of uncertainty can help with 
such traditionally challenging concepts. However, the question of if, and how, people may 
reason with multiple types of uncertainty associated with a forecast remains largely 
unexplored. In this series of studies, we seek to understand if individuals can integrate 
indirect uncertainty about how “good” a model is (operationalized as a qualitative expression 
of forecaster confidence) with quantified uncertainty in a prediction (operationalized as a 
quantile dotplot visualization of a predicted distribution). Our first study results suggest 
that participants utilize both direct quantitative uncertainty and indirect qualitative 
uncertainty when conveyed as quantile dotplots and forecaster confidence. In manipulations 
where forecasters were less sure about their prediction, participants made more 
conservative judgments. In our second study, we  varied the amount of quantified 
uncertainty (in the form of the SD of the visualized distributions) to examine how participants’ 
decisions changed under different combinations of quantified uncertainty (variance) and 
qualitative uncertainty (low, medium, and high forecaster confidence). The second study 
results suggest that participants updated their judgments in the direction predicted by 
both qualitative confidence information (e.g., becoming more conservative when the 
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INTRODUCTION

Various types of uncertainty are inherent in most modeling 
procedures (Pang et al., 1997), particularly in weather forecasting 
models where direct quantitative uncertainty (e.g., 25% chance 
of rain) and indirect qualitative uncertainty concerning the 
accuracy of the forecast are present. Direct quantitative 
uncertainty expresses uncertainty about facts, numbers, and 
hypotheses in absolute quantitative forms such as probability 
distributions or confidence intervals (van der Bles et al., 2019). 
Uncertainty visualization has historically focused on developing 
and testing methods for communicating direct quantitative 
uncertainty (for review see, Padilla et al., 2020). As researchers 
van der Bles et  al. (2019) acknowledge that less work has 
focused on other types of uncertainty, including indirect 
qualitative uncertainty, which expresses the quality of knowledge 
about how effectively the facts, numbers, or hypotheses represent 
reality. Each modeling or forecast procedure is a tool for 
expressing real-world data, and therefore, some models are 
more representative of reality than others (McElreath, 2016). 
For example, a model may miss important data, calibrate poorly, 
or have incorrect assumptions, all of which may decrease a 
model’s accuracy. In an ideal setting, where all relevant data 
and relationships are known, there would be  no need for 
indirect qualitative uncertainty. However, in many domains, 
this ideal cannot be attained; thus, indirect qualitative uncertainty 
is widely used for expressing experts’ subjective evaluation of 
model and forecast quality, such as the evidence confidence 
levels proposed by the Intergovernmental Panel on Climate 
Change (IPCC; Stocker et  al., 2013; for a review of scientific 
evidence rating systems, see also West et  al., 2002).

Without a clear understanding of how people conceptualize 
multiple types of uncertainty, we  cannot know how people will 
respond when presented with qualitative uncertainty concerning 
the accuracy of a model. Prior work indicates that even reasoning 
with only quantified uncertainty – without qualitative uncertainty 
included – can be  challenging for both novices and trained 
experts (Belia et  al., 2005). In one study, researchers found 
that professionals (e.g., professors, researchers, and physicians) 
in psychology, behavioral neuroscience, and medicine 
misunderstood how 95% confidence intervals, shown with error 
bars, relate to statistical significance (Belia et  al., 2005). These 
results are concerning, because many scientific publications in 
the professionals’ respective disciplines use error bars to illustrate 
statistical significance. Consequently, reasoning with direct and 
indirect uncertainty simultaneously will likely be  challenging. 
Emerging research in data visualization has developed promising 

new ways to communicate traditional challenging statistical 
concepts, such as quantified uncertainty, more intuitively (for 
review, see Padilla et  al., 2020). However, more work is needed 
to determine if the advancements in data visualization support 
reasoning enough to help people conceptualize indirect and 
direct uncertainty when presented together.

Given that little is known about how people reason with 
various types of uncertainty, many data communicators are 
hesitant to represent uncertainty in their science. In a survey 
of 90 visualization authors, Hullman (2019) found that authors 
(e.g., data scientists, journalists, visualization designers, and 
science communicators) are reluctant to visualize quantified 
uncertainty, perceiving that it may lessen the credibility and 
effectiveness of their results and that audiences may find it 
off-putting or overwhelming. Scientists may also fear that 
communicating the uncertainty in their models invites criticism, 
indicates incompetence, or decreases trust in their science 
(Fischhoff, 2012; Gustafson and Rice, 2019).

Whereas both direct and indirect uncertainties are prevalent 
in most forecast models, the question of if, and how, people 
reason with multiple types of uncertainty from a single forecast 
remains mostly unexplored. The goal of the current work is 
to examine the how people make decisions with direct and 
indirect uncertainties to gain insights into how we conceptualize 
various types of uncertainties and their combinations. In the 
presented series of studies, we  use a visualization technique 
entitled quantile dotplots to communicate direct uncertainty, 
which is a modern, empirically validated method for 
communicating direct uncertainty in the form of distributions 
(see Figure 1; Kay et al., 2016; Fernandes et al., 2018). Participants 
in the current series of studies were tasked with completing 
a resource allocation judgment using quantile dotplots that 
display a forecast for predicted low nighttime temperatures. 
In some conditions, participants were also provided with indirect 
uncertainty in the form of forecaster confidence in the nighttime 
low-temperature prediction. Within the context of a resource 
allocation judgment, we  tested if people can incorporate 
information about forecasts and forecaster confidence in their 
decisions. This study provides the first insights into how people 
conceptualize both direct and indirect uncertainty within a 
single forecast using best practices in information communication.

Background
Scholars have proposed numerous uncertainty typologies to 
classify forms of uncertainty (e.g., van Asselt and Rotmans, 
2002; Walker et  al., 2003; Morgan et  al., 2009; Spiegelhalter, 
2017; for a recent review, see van der Bles et  al., 2019). 

forecaster confidence is low) and quantitative uncertainty (e.g., becoming more conservative 
when the variance is increased). Based on the findings from both experiments, 
we recommend that forecasters present qualitative expressions of model confidence 
whenever possible alongside quantified uncertainty.

Keywords: uncertainty, visualization, cognition, direct uncertainty, indirect uncertainty, aleatory, quantile dotplots, 
decision-making
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Researchers frequently recognize two categories of uncertainty 
but differ on the terms they use to describe these. One consists 
of uncertainty that can be  directly quantified: e.g., epistemic 
(Der Kiureghian and Ditlevsen, 2009), error (Goodman and 
Nguyen, 1999), risk (Knight, 2012), and first-order uncertainty 
(Bach et  al., 2009). These types of uncertainties can 
be characterized by mathematical expressions that denote error 
or variability in measurements, such as probability distribution 
functions (PDFs) or standard error (SE), which can be  used 
to make predictions about future events. For example, the 
likelihood of rain tomorrow can be  expressed in probabilistic 
terms that can be calculated directly (i.e., 25% chance of rain). 
In line with the terminology proposed by van der Bles et  al. 
(2019), we will refer to absolute quantitative forms of uncertainties 
as direct quantitative uncertainty. The second category of 
uncertainty is comprised of those uncertainties that cannot 
be  quantified directly, e.g., ontological (Spiegelhalter, 2017), 
ambiguity or true uncertainty (Knight, 2012), and second-order 
uncertainty (Bach et al., 2009). Indirect uncertainty exists when 
a model has variability or error that the modeler cannot foresee 
or quantify, possibly due to unknown amounts or levels of 
missing data, or unidentifiable error that enters the modeling 
pipeline (Pang et  al., 1997), among other causes. For example, 
the accuracy of a rain forecast model for tomorrow is higher 
than the accuracy of a model that predicts the likelihood of 
rain 2  years from now. By definition, such unquantifiable 
uncertainties can be  expressed only in subjective forms, as in 
the IPCC forecaster confidence ratings (Stocker et  al., 2013). 
In line with van der Bles et  al. (2019), we  will refer to 
unquantifiable uncertainty as indirect qualitative uncertainty. 
In particular, this work focuses on expressions of the quality 
of knowledge concerning how accurately the facts, numbers, 
or hypotheses represent reality (van der Bles et  al., 2019).

Even though uncertainty is inherent in all future forecasts, 
most of the public has difficulty reasoning with conventional 
forms of uncertainty communication such as standard probability 
formats, which are expressed with terms such as probability, 
likelihood, chance, or odds. A seminal research program by 
Kahneman and Tversky (e.g., Tversky and Kahneman, 1974; 
Kahneman and Tversky, 1977, 1979, 1982, 1984) systematically 
documented the countless ways that people rely on heuristics, 
or rules of thumb, to make judgments with probabilities rather 
than using the mathematically correct solution. Evidence that 
people made predictable errors when reasoning with probabilities 

led some researchers to propose that human logic is systematically 
flawed (for a critical discussion of this debate, see Vranas, 2000). 
Subsequent work by Gigerenzer (1996) suggests that decisions 
may appear to be  flawed when people are presented with overly 
confusing information that can influence their judgments in 
submathematically optimal ways. Gigerenzer et  al. proposed that 
probabilistic decisions become more intuitive when the format 
of an expression more naturally corresponds to how people 
experience probability throughout their lives (e.g., changing 10% 
to 1 out of 10; e.g., Gigerenzer and Hoffrage, 1995; Gigerenzer, 
1996; Hoffrage and Gigerenzer, 1998). Numerous studies support 
the hypothesis that using a frequency framing of numeric expressions 
improves probabilistic judgments (for review and caveats, see 
Visschers et  al., 2009). For example, one study found that when 
gynecologists were presented with information about breast cancer 
screenings using probabilities (e.g., 1% probability of breast cancer 
in the population; mammograms are 90% accurate; the likelihood 
of a false-positive is 9%), 790 of 1,000 incorrectly answered a 
question about a patient’s breast cancer odds. However, after 
training on how to convert probabilities to frequencies (e.g., 1 
of 100 women in the population have breast cancer), 870 of the 
1,000 gynecologists were able to correctly respond to a question 
about a patient’s breast cancer odds (Hoffrage and Gigerenzer, 1998).

A growing body of research finds that visualizations that 
show distributional information in frequency framing can 
improve accuracy and memory compared to visualizations that 
show only probability distributions and/or summary statistics 
(e.g., Kay et  al., 2016; Ruginski et  al., 2016; Hullman et  al., 
2017; Padilla et  al., 2017; Fernandes et  al., 2018; Kale et  al., 
2020; see examples of distributional visualizations and those 
that use frequency framing in Figure  1). A reliable finding 
across uncertainty visualization research is that static interval 
plots, such as the ubiquitous 95% confidence interval, can lead 
to errors and biases (e.g., Belia et al., 2005; Joslyn and LeClerc, 
2012; Padilla et  al., 2017). Many studies find that increasing 
the expressiveness of an interval plot by displaying distributional 
information can improve performance, for example, with quantile 
dot plots (Kay et  al., 2016; Fernandes et  al., 2018; Kale et  al., 
2020), hypothetical outcome plots (Hullman et  al., 2015; Kale 
et  al., 2018), ensemble plots (Ruginski et  al., 2016; Padilla 
et  al., 2017), gradient plots, and violin plots (Correll and 
Gleicher, 2014). Among the visualizations that show distributional 
information, those that include frequency framing, specifically 
quantile dot plots and hypothetical outcome plots, have been 

FIGURE 1 | A subset of distributional uncertainty visualization techniques as described in Padilla et al. (2020). The three methods on the left also utilize frequency 
framing.
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found to outperform other distributional visualizations (Hullman 
et  al., 2015; Kay et  al., 2016; Fernandes et  al., 2018; Kale 
et  al., 2018, 2020). Best practices in uncertainty visualization 
suggest distributional information be displayed using frequency 
framing when possible and in a way that does not allow the 
viewer to fixate on summary information such as a mean 
(Kale et  al., 2020). For a full review of modern uncertainty 
visualization techniques and theory, see Padilla et  al. (2020).

One of the most consistently high performing uncertainty 
visualizations is the quantile dotplot. Quantile dotplots use stacked 
dots to represent a probability distribution (see Figure  2). Each 
dot is a quantile of the distribution, such that each dot represents 
the same probabilistic value. Figure  2 shows a cumulative 
distribution function for a normal distribution of forecasted 
nighttime low temperatures and the corresponding quantile 
dotplot that represents the distribution. In this example, each 
dot represents a 5% probability. The viewer can count the number 
of dots in a given range to determine the probability of the 
nightly low temperature falling within that range. In several 
empirical studies, researchers have found that quantile dotplots 
improve memory of distributional information and lead to more 
consistent probability estimates compared to probability density 
plots (Kay et  al., 2016; Hullman et  al., 2017; Kale et  al., 2020). 
More studies have found that quantile dotplots outperform 
interval plots, density plots, and textural descriptions of uncertainty 
for decisions with risk (Fernandes et  al., 2018). When viewers 
need to mentally combine multiple estimates of uncertainty from 
different sources, researchers have found that quantile dotplots 
and density plots improve participants’ judgments compared to 
confidence intervals and point estimates (Greis et  al., 2018). 
Quantile dotplots are a promising visualization technique that 
utilizes the benefits of frequency framing and incorporates the 
best practices in visualization research (Padilla et  al., 2020).

In the context of indirect qualitative uncertainty, a large 
amount of work has been dedicated to examining how people 
reason with linguistic expressions of experts’ interpretations 

of scientific accuracy (van der Bles et  al., 2019). For example, 
West et  al. (2002) offer a review of over 19 grading systems 
that can be used to evaluate the strength of a body of evidence 
in a clinical context using expert ratings of quality, quantity, 
and consistency of scientific evidence. Other systems include 
categorical ratings of the quality of evidence such as high, 
moderate, low, and very low (Balshem et  al., 2011; also see 
Schneider and Moss, 1999; Stocker et  al., 2013). Nevertheless, 
a long history of research demonstrates that significant variability 
exists in the assumed probabilistic values attributed to linguistic 
uncertainty expressions (for review, see O’Hagan et  al., 2006), 
which is highly dependent on individual differences and the 
context of the uncertainty (Budescu et  al., 2009, 2012).

To date, no research has empirically tested how people 
reason with both direct and indirect uncertainty information 
about a single forecast. However, researchers have explored 
approaches for generating forecasts with multiple occurrences 
of uncertainty. A number of these approaches have implemented 
weather forecasting using natural language generation (NLG) 
and addressed ambiguity in language. One study produced 
pollen forecasts for Scotland through spatiotemporal analysis 
in an effort to effectively forecast information (Turner et  al., 
2006), and another generated short-term weather forecasts in 
the form of natural language texts using fuzzy procedures to 
model imprecise descriptions (Ramos-Soto et  al., 2014). Other 
related work advanced the analysis of protoforms (structures 
for fuzzy quantified sentences) to account for the imprecision 
of linguistic descriptors of numerical data (Ramos-Soto and 
Martin-Rodilla, 2019). Researchers have also demonstrated the 
use of textual descriptions of forecasts along with forecast icons 
such as rain, cloud, or sun icons (e.g., Ramos-Soto et  al., 
2015). To our knowledge, researchers have not considered how 
people conceptualized direct visualizations of uncertainty along 
with indirect textural descriptions of uncertainty.

Additional research has also sought to computationally 
integrate indirect expert estimates of scientific quality with 

FIGURE 2 | An illustration of the relationship between a quantile dotplot and cumulative distribution function. This example shows a normal distribution of a 
forecasted nighttime low temperature with a mean of 34°F and SD of 2°F. Each dot represents a 5% probability.
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direct uncertainty expressions (e.g., Harmel et al., 2010; Turner 
et al., 2012; Darvishian et al., 2014; Rhodes et al., 2020). Turner 
et  al. (2012) developed a method for constructing prior 
distributions based on expert opinions that can be incorporated 
into direct quantitative uncertainty to reflect varying levels of 
quality, entitled bias-adjusting. Scholars have applied the process 
of bias-adjusting estimates in various applications, notably  
within meta-analyses of clinical trials (e.g., Turner et  al., 2012; 
Darvishian et  al., 2014; Rhodes et  al., 2020). Other methods 
for computationally integrating direct and indirect uncertainty 
include correction factors based on predictions of model fit 
(Harmel et  al., 2010). This work is promising, but researchers 
have not examined how people reason with bias-adjusted 
estimates, resulting in no clear guidance as to when such 
techniques are appropriate for a general audience. Further, 
when direct and indirect uncertainty are computationally 
combined and communicated as a summary, transparency is 
reduced, which may negatively impact trust (O’Neill, 2012, 
2018; van der Bles et  al., 2020). The present research focuses 
on determining how people conceptualize direct and indirect 
uncertainties that are communicated independently about a 
single forecast. The results of our work can be  used as a 
baseline to determine if people conceptualize computationally 
aggregated direct and indirect uncertainties in a manner similar 
to the way they would with the two shown independently.

Researchers have also shown significant interest in examining 
how people mentally combine subjective expert uncertainty 
estimates from multiple sources (e.g., Wallsten et  al., 1997; 
Clemen and Winkler, 1999; Ariely et  al., 2000; Budescu, 2005) 
and how to computationally aggregate estimates from multiple 
experts (e.g., Fan et  al., 2019; Han and Budescu, 2019). When 
people think a phenomenon has uncertainty, they will commonly 
look at multiple sources of information to reduce their perceived 
uncertainty (Greis et  al., 2017). For example, people may seek 
a second opinion about medical procedures or look to multiple 
weather forecasts to determine the level of agreement between 
forecasters. When asked to mentally aggregate estimates from 
multiple experts, they commonly mentally average the estimates 
(Budescu, 2005). Further visualizations that show fine-grained 
uncertainty in an estimate, such as quantile dotplots, can 
improve how people mentally integrate uncertainty information 
from multiple sources (Greis et  al., 2018).

Although the research described above systematically reveals 
how people reason with uncertainty from multiple sources 
and the variability within a single source, researchers are less 
clear about how these findings generalize to multiple types of 
uncertainty from the same source (e.g., direct quantitative and 
indirect qualitative uncertainty from a single source). For 
example, a simple solution for determining the most likely 
forecasted nighttime low temperature using two competing 
forecasts is to compute the average mean temperature from 
both forecasts, a strategy that people commonly use (Ariely 
et al., 2000; Budescu, 2005). However, we have no such obvious 
way to mentally combine a forecasted nighttime low temperature 
with a subjective estimate of the forecaster’s confidence, because 
indirect uncertainty that is expressed as forecaster confidence 
does not have a defined value by definition. Given the complexity 

and variability within the interpretation of indirect uncertainty, 
people may use many different heuristic strategies when trying 
to reason with both direct and indirect uncertainty. The goal 
of the current work is to examine the strategies that people 
use when reasoning with direct and indirect uncertainty to 
provide scientists with practical advice on how to effectively 
communicate the uncertainty in their science.

Overview of Experiments
As a first step in understanding how people reason with multiple 
types of uncertainty, we  present a series of studies that aim 
to understand if individuals can integrate uncertainty about 
how “good” a model is (operationalized as an expression of 
forecaster confidence) with quantified uncertainty in a prediction 
(operationalized as a quantile dotplot visualization of a predicted 
distribution). In Experiment 1, we  utilized quantile dotplots 
as an effective method to communicate direct uncertainty, and 
we  selected forecaster confidence ratings as an imperfect but 
commonly used pragmatic method for communicating indirect 
uncertainty. We  tested how people reason with both direct 
and indirect uncertainty in the context of a resource allocation 
judgment modeled after an experiment designed by Joslyn and 
LeClerc (2012). In the original study, participants were shown 
various forms of information about low nighttime temperatures 
and tasked with deciding to spend funds from a virtual budget 
to salt the roads if they believed the temperature would drop 
below freezing. If the participants failed to salt the roads when 
the road froze overnight, they were penalized by losing funds 
from a virtual budget. Joslyn and LeClerc (2012) found that 
the participants presented with a likelihood estimate of the 
temperatures dropping below 32°F made more accurate decisions 
and trusted the forecast more than participants presented with 
only a single estimate of the nighttime low temperature.

In the present studies, we adapted the context used in Joslyn 
and LeClerc (2012) to mimic reports from our colleagues at 
a large nongovernmental organization (NGO), in which they 
described cases where cold temperatures and snow forecasts 
were used to determine if emergency aid should be  sent to 
alpaca farmers in Peru. In July of 2016, the government of 
Peru declared a state of emergency for regions where alpacas 
were raised after tens of thousands of alpacas died due to 
freezing temperatures (Hersher, 2016). The loss of livestock was 
devastating to the farmers in the affected regions of Peru, because 
exporting alpaca wool is the region’s primary source of income 
(Hersher, 2016). In 2016, NGOs had to decide when to provide 
aid to alpaca farmers, including cold-protective blankets and 
nutrition for the alpacas, since the area had experienced widespread 
crop loss as well. In 2013, alpaca farms experienced a similarly 
devastating cold spell that killed thousands of alpacas (Gallas, 
2013; Hersher, 2016). Due to climate change, forecasters predict 
that areas like Peru will experience considerable fluctuations in 
temperature, resulting in more extreme temperatures (UN, 2020). 
Consistent with real-world judgments that NGOs made in 2016, 
participants were tasked with deciding to issue or withhold 
emergency aid for alpaca farmers in Peru based on distributional 
information about forecasted nighttime low temperatures and 
forecaster confidence in the accuracy of the forecast.
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In Experiment 1, the goal was to test if descriptions of 
forecaster confidence in the accuracy of a forecast influenced 
participants’ decisions to issue or withhold emergency aid. In 
the instructions, participants were told that some remote areas 
of Peru were more challenging to forecast than others and 
that forecaster confidence reflects these differences. The primary 
manipulation of Experiment 1 was incorporating the level of 
forecaster confidence that accompanied one block of trial 
forecasts (High, Medium, and Low forecaster confidence).

We visualized the nighttime low-temperature forecasts using 
quantile dotplots with the same variability (Medium-variance: 
SD of 2°F) but different mean temperatures for each forecast 
(ranging from 31.5 to 37°F, see Figure  3). By manipulating 
the mean temperature of the forecasts, we  were able to test 
at which temperature participants switched from giving to 
withholding aid. As with real weather forecasts, in some cases, 
an unfavorable outcome is more likely than not to happen, 
and anticipatory action should be  taken to minimize adverse 
outcomes. Similarly, our design presented participants with 
situations in which it was reasonably apparent that the 
temperature would likely be  below freezing (Figure  3A with 
a mean of 31.5°F) and other cases in which it was clear the 
temperature would likely stay above freezing (Figure  3C with 
a mean of 37°F).

The first experiment’s goal was to consider the values between 
the extremes to determine at which point people would switch 
from giving to withholding aid (e.g., their crossover temperatures). 
In the first block, participants were provided with no information 
about forecaster confidence to identify their baseline crossover 
temperatures. Then, in the second block, participants were 
provided with additional information about forecaster confidence, 
which allowed us to determine how their judgments changed 
in response to the inclusion of indirect uncertainty.

In Experiment 2, we  sought to examine how participants 
would integrate various direct quantitative uncertainty levels 
with the forecaster confidence ratings. We manipulated quantitative 
uncertainty by changing the SD of the quantile dotplots so 
that participants saw forecasts with low- (SD of 1°F, referred 
to as Low-variance), medium- (SD of 2°F, referred to as Medium-
variance), and high-variability (SD of 3°F, referred to as High-
variance) crossed with three levels of forecaster confidence.

The results of both studies will provide insights into the 
nature of how people conceptualize and make decisions with 
multiple types of uncertainty, which will provide previously 
missing guidance for scientific communication standards.

MATERIALS AND METHODS

Participants
The sample size was determined using a power analysis based 
on effect sizes reported in Savelli and Joslyn (2013), which 
indicated that 85 participants would be  needed to detect a 
medium effect size (Cohen’s d = 0.39). We recognize differences 
between the stimuli and tasks used in Savelli and Joslyn (2013) 
and the current work. However, we based the current experiment 
on the task used by Savelli and Joslyn (2013), and, therefore, 
it is the closest prior work to the current study, which is why 
we  utilized the effect size to determine the necessary power 
in the present experiment. In Experiment 1, participants were 
90 individuals (female  =  38, male  =  51, prefer not to say  =  1, 
mean age = 39, SD = 9.69) with Master Class status on Amazon’s 
Mechanical Turk with a greater than 90% approval rating. In 
Experiment 2, participants were 90 individuals (female  =  36, 
male  =  53, preferred to self-describe  =  1, mean age  =  38, 
SD = 10) with the same Amazon’s Mechanical Turk qualifications.

Stimuli
For Experiment 1, the package ggplot2 v. 3.3.0 (Wickham, 2009) 
within the programming language R (R Core Team, 2013) was 
used to generate 12 horizontal quantile dotplots with SD of 2°F 
and mean temperatures ranging from 31.5 to 37°F with a step 
size of 0.5°F (see Figure  3; for example, stimuli). A quantile 
dotplot represents a distribution where dots are quantiles of the 
distribution. In this case, each dot depicts a 5% probability, 
because there are 20 dots total. To determine the predicted 
probability of the nighttime low temperature being 32°F or lower, 
a viewer counts the dots located on and to the left of 32°F 
and multiply the number of dots by 5 (or divides by 20). 
We presented the stimuli using Qualtrics survey software (Qualtrics, 
LLC, 2014). We  used 20 dots as researchers found that 20 and 
50 dots can be effective for quantile dotplots (Fernandes et al., 2018).

For Experiment 2, the base images were created using the 
same procedure as in Experiment 1 but with SDs of 1, 2, and 
3°F, with 50 dots (see Figure  4). Fifty dots were used instead 
of the previous 20 in Experiment 1 to reduce the visual skewing 
that occurred when fewer dots were used to display dotplots 
with SD of 1°F. The resulting dotplots had 12 mean values 
ranging from 31.5 to 37°F and three levels of variance, making 
a total of 36 stimuli.

A

B

C

FIGURE 3 | Stimuli depicting dotplot distributions with means of 31.5°F (A), 
34°F (B), and 37°F (C).

https://www.frontiersin.org/journals/psychology
www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Padilla et al. Compound Uncertainty

Frontiers in Psychology | www.frontiersin.org 7 January 2021 | Volume 11 | Article 579267

Design
In Experiment 1, we employed a blocked within-subjects design. 
The first block consisted of 12 randomly presented trials in 
which the mean temperature of the dotplots varied. The second 
block consisted of 36 trials with three variations on the trials 
used in the prior block. Under each of the forecasts, text was 
included that indicated if the forecaster had High, Medium, 
or Low confidence that the forecast represented the true 
distribution of low nighttime temperatures (see Figure  5). 

Thirty-six trials in the second block were presented in a 
randomized order. In sum, participants completed 48 trials.

For Experiment 2, the same blocked within-participant design 
was used as in Experiment 1, but we  included the variance 
manipulation (Low-, Medium-, and High-variance) as an additional 
within-subjects manipulation. The first block consisted of 36 
randomly presented trials in which the mean temperature of 
the dotplots and the variance were manipulated (within-participant: 
12 mean temperatures and three levels of variance). The second 

FIGURE 4 | Stimuli depicting the base dotplot distributions with means of 34°F and Low- (left), Medium- (middle), and High-variance (right).

A

B

C

FIGURE 5 | Stimuli from the second block depicting the dotplots with mean values of 31.5°F and text that indicated if the forecasters had High (A), Medium (B), or 
Low (C) confidence in the forecast.
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block consisted of 108 trials with three variations on the trials 
used in the previous block. As in Experiment 1, under each 
of the forecasts, text was included that indicated if the forecaster 
had High, Medium, or Low confidence that the forecast represented 
the true distribution of low nighttime temperatures (within-
participant manipulations: 12 mean temperatures, three levels 
of variance, and three levels of confidence).

Procedure
For Experiment 1, after providing digital consent, participants 
were provided with instructions that described the task, context, 
and compensation. The task and compensation scales were 
adapted from prior work by Joslyn and LeClerc (2012). In 
the current experiment, participants were tasked with responding 
“yes” or “no” to issuing cold-protective blankets for alpacas 
based on quantile dotplots depicting the forecasted nighttime 
low temperature. The instructions for the task were as follows:

Scenario: Alpacas may need blankets: Assume that 
you  work at the Red Cross, and your job is to manage 
resources for farms in Peru. In previous years, alpacas have 
died in Peru from cold temperatures. Alpacas can typically 
withstand the cold unless the temperature drops below 32°F.
Budget: You are in charge of the Red Cross’s blanket 
budget, and it is your job to issue blankets to the alpacas 
when temperatures fall below 32°F, which will help them 
withstand the cold.
Budget Constraints: You have a budget for 48 days of 
$48,000. Purchasing and delivering blankets to farmers 
costs $1,000 (per night). If you fail to issue blankets to the 
farmers and the temperature drops below 32°F, it will cost 
$6,000 from your budget.
Task: In the experiment, you will be  shown a nighttime 
temperature forecast like the one below. In the forecast, each 
dot represents a 1 out of 20 chance the nighttime low will 
be that temperature. You will be asked some questions about 
this forecast, including if you will issue blankets to the alpacas.
Compensation: Please respond to the best of your ability. 
You will receive an extra $0.15 cents for every $1,000 that 
you have in your budget at the end of 48 days.

On every trial, participants were shown one quantile dotplot 
and text that reminded them, “Your job is to consider the 
forecast and determine if the nighttime low will drop below 
freezing, in which case you should issue blankets to the alpacas. 
Each dot in the forecast represents a 1 out of 20 chance.” 
After the first block (12 trials), participants then completed a 
second block (36 trials) in which confidence information about 
the forecast was also provided along with the dotplots. The 
following are the instructions for the second block:

In this section of the experiment, you will be doing the 
same task as before, but you  will be  shown more 
information about the forecast models. Each of the 
forecasts will also include information about how 
confident the scientists are about the accuracy of the 
forecast. There are many factors that make the temperature 

difficult to predict, and scientists are more confident about 
some forecast models than others.
Example 1, high confidence: For example, see the 
forecast below and notice the information highlighted in 
green, which indicates that the scientists are highly 
confident that the forecast represents the true distribution 
of nighttime low temperatures.
Example stimuli shown with high forecaster confidence 
as in Figure 5A.
Example 2, low confidence: Now see the next forecast 
below. While the forecast may look the same, the scientists 
are less confident about the accuracy of this forecast 
because the prediction is for a remote area in Peru that 
the scientists have not forecasted before, and they do not 
have all the information they need to make an 
accurate forecast.
Example stimuli shown with low forecaster confidence 
as in Figure 5C.

After the main experiment, participants were asked to rate 
how trustworthy they believed the forecasts with High-, Medium-, 
and Low-confidence were on a Likert scale ranging from 1 
(not at all trustworthy) to 7 (completely trustworthy).

For Experiment 2, the procedure was the same between 
the two studies in all regards except that the overall budget 
was increased from $48,000 (for the 48 trials in Experiment 
1) to $144,000 (for the 144 trials in Experiment 2). The 
instructions were updated to account for the different number 
of dots in the quantile dotplots and the increased number of 
trials and budget.

Compensation
Participants in Experiment 1 were paid a base rate of $1.25 
(in line with Illinois minimum wage laws) and provided 
additional performance-based compensation dictated by the 
remaining budget that each individual had at the end of the 
study. For the 48 total trials, individuals had $48,000, and if 
they decided to give blankets to the alpacas every day, they 
would have a remaining budget of $0. For every $1,000 left 
in their budget, participants received an extra $0.15, paid at 
the end of the study as a bonus. Participants were not given 
feedback until the end of the study regarding the remaining 
balance in their budget or on the accuracy of their judgments, 
and, therefore, this study did not measure learning effects. In 
Experiment 2, participants were paid a base rate of $6. For 
the 144 total trials, individuals had $144,000, and if they 
decided to issue blankets to the alpaca farmers every day, they 
would have a remaining budget of $0. For every $1,000 left 
in their budget, participants received an extra 5  cents paid at 
the end of the study as a bonus.

Accuracy
Based on the $1,000 cost of providing blankets and the $6,000 
penalty for withholding blankets, the optimal strategy would 
be  to give blankets if the probability of the temperature  
being equal to or below 32°F is greater than 16.6% (e.g., 
1,000/6,000  =  0.166). Consequently, the optimal crossover 
temperature (the forecast value at which one should switch 
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from giving to not giving blankets) is the forecast value for 
which a Normal distribution with an SD of 2°F would have 
16.6% of its probability mass below 32°F. That forecast value 
is 33.94°F: for X~Normal(33.94, 2), P(X  <  32)  =  16.6%. As 
an illustration of how this crossover point can be  seen in a 
quantile dotplot (and the relationship between specific 
probabilities and quantile dotplots), we denoted 16% probability 
in the quantile dotplot in Figure  2. Given the forecast of 34°F 
in that figure (the approximate optimal crossover), we  can see 
that roughly 16% of the probability mass is to the left of 32°F.

To compute participants’ crossover points, we  derive the 
point at which there is a 50% probability they will give/not 
give blankets using a logistic regression model of their decisions. 
The response code is in the form of a Bernoulli distribution, 
where probabilities are the inverse logit (i.e., logistic) function 
of values derived from the latent linear predictor:

Blanket Decision ~ Bernoulli(pi)
pi ilogit= ( )−1 h
hi i i= ( )g temp ; predictors

where g is a function that makes the log odds of the person 
choosing to give blankets a linear function of the temperature, 
depending on the other predictors (e.g., condition and 
participant). Generically, this function follows the form:

g temp; predictors predictors predictors( )= [ ]+ [ ]intercept slope ⋅⋅ temp

That is, each person in each condition may have a particular 
slope and intercept in this linear function. The crossover 
temperature for a given set of predictors, t(predictors), is then 
the point at which g(temp; predictors)  =  logit(50%)  =  0. Thus, 
the crossover point is:
 
0= [ ]+ [ ]⋅ ( )intercept slope t

t

predictors predictors predictors

preedictors
predictors

predictors
( )=

− [ ]
[ ]

intercept
slope

Given the optimal crossover temperature of 33.94°F, we will 
interpret cases where participants switch from giving to 
withholding blankets at lower temperatures than 33.94°F as 
more risky than optimal, as the likelihood of being penalized 
$6,000 for withholding blankets is higher if the temperature 
drops below freezing and the alpacas die. We will also interpret 
cases where participants switch from giving to withholding 
blankets at higher temperatures than 33.94°F as more conservative 
than optimal, as the larger penalty ($6,000) is less likely, but 
it still costs $1,000 to provide blankets. Note that the most 
conservative strategy would be  to issue blankets on each of 
the 48 trials regardless of the temperature forecast, which would 
result in $0 remaining in the $48,000 budget.

Using the same procedure described in Experiment 1, 
we  calculated the optimal crossover temperature to change 
from giving to withholding blankets for each level of variance 
for Experiment 2. For a distribution with Low-variance, the 
optimal crossover temperature is 32.97°F, for Medium-variance 
the optimal crossover is the same as in Experiment 1, which 
used distributions that had SD  =  2°F (33.94°F). For High-
variance, the optimal crossover temperature is 34.90°F.

EXPERIMENT 1

As previously detailed, reasoning with subjective descriptions 
of uncertainty is variable (Budescu et  al., 2009, 2012), and it 
is unclear if and how people will update their judgments with 
additional information about forecaster confidence. A pessimistic 
hypothesis would propose that indirect uncertainty expressed 
as forecaster confidence would be too complicated, overwhelming, 
or variably interpreted to produce meaningful changes in 
resource allocation judgments. Participants also may not 
understand the value of the forecaster confidence information 
and ignore it altogether. An alternative hypothesis would suggest 
that participants will incorporate information about forecaster 
confidence but in suboptimal ways, which could include making 
highly variable judgments or relying on guessing. A final and 
relatively optimistic approach would be  to hypothesize that 
participants will reasonably update their judgments with the 
inclusion of indirect uncertainty, possibly making increasingly 
conservative judgments as the confidence decreases. 
We  summarize these competing predictions below:

 • Lack of effect prediction: Participants will not be affected by 
the forecaster confidence manipulation and, therefore, either 
always issue or always withhold aid. This strategy could be due 
to participants ignoring the forecaster confidence information, 
not doing the task, or making extremely cautious decisions.

 • Increased variability prediction: The variability in participants’ 
judgments will increase along with indirect uncertainty.

 • Increased caution prediction: Participants will make 
increasingly cautious judgments as more indirect uncertainty 
is expressed.

Experiment 1 aims to determine which strategy most 
accurately describes participants’ decision patterns when 
presented with varying levels of forecaster confidence.

Statistical Analysis
We used the following R packages for the analysis: tidyverse 
v. 1.2.1(Wickham, 2017; data processing), brms v. 2.13.0 (Bürkner, 
2017, 2018; Bayesian modeling), and tidybayes v. 2.0.3 (Kay, 
2020; data processing and visualization). We  used a Bayesian 
multilevel binomial logistic regression to examine how 
participants’ judgments were influenced by indirect qualitative 
uncertainty, which was communicated as forecaster confidence. 
We  evaluated the amount of variance in participants’ blanket 
judgments explained by the mean forecast temperatures shown 
in the stimuli and the levels of forecaster confidence. The 
dependent variable was participants’ decisions to give blankets 
(coded as 1) or withhold blankets (coded as 0). Uncertainty 
communication was included in the model as a fixed effect 
predictor (coded such that No indirect uncertainty information 
was the referent). The mean temperature of the distributions 
in the stimuli was also included as a fixed effect. We  centered 
temperatures around the optimal crossover temperature (33.94°F) 
in order to interpret the resultant coefficients as riskier (negative 
values) or more conservative (positive values) than the optimal 
strategy for this task. R-markdown code and data for this 
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FIGURE 6 | Posterior estimates of the distributions of crossover temperatures for the No indirect uncertainty information condition (block 1), and High, Medium, 
and Low forecaster confidence conditions (block 2). The black dots represent the posterior mean, and the black lines represent the 95% credible intervals around 
the means. The dotted line is plotted at 33.94°F, which is the optimal crossover temperature.

analysis, and all subsequent analyses, can be  found in the 
supplemental material.1

Participant ids were included as a random intercept effect, 
and both Uncertainty Communication and Optimal-centered 
Temperatures were included as random slopes [R notation: Blanket 
Decision ~ Uncertainty Communication + Optimal-centered 
Temperatures + (Uncertainty Communication + Optimal-centered 
Temperatures | Participant)]. The model specifications included 
weakly informative priors centered at 0°F with an SD of 2.5°F. 
These priors were chosen because the lowest mean temperature 
in the stimuli was 31.5°F, which is 2.5°F from the optimal 
crossover temperature (33.94°F). For the reader familiar with 
statistical significance, we used 95% credible intervals to determine 
if a predictor reliably accounted for a proportion of variance in 
participants’ judgments to provide or withhold emergency aid. 
We  interpreted predictors with a credible interval that did not 
include zero as having a reliable effect on participants’ judgments.

Results
To determine if the crossover temperatures meaningfully differed 
from the optimal crossover temperature (33.94°F), we  plotted 
the posterior distributions for the crossover temperatures of 
each condition in Figure  6, along with 95% credible intervals 
(black line) and the means of the distribution (black dot). 
These observations revealed that judgments in the No indirect 
uncertainty information condition were riskier than optimal, 
and those in the Low-confidence condition were more 
conservative than optimal. These results suggest that when 
provided with no information about the qualitative uncertainty 
in a forecast, participants’ judgments were inclined to be riskier 
than optimal. When provided with forecaster confidence, 
participants’ judgments were better aligned with the optimal 
decision and more conservative. In high-risk scenarios in which 
conservatism is preferable to risk-taking, such as in the real 

1 Supplemental materials are stored on the Open Science Framework: https://
osf.io/atr57/?view_only=6d2c31aa499d490db70498530a06cad4

case of emergency aid distribution in Peru, our work suggests 
that providing risk managers with qualitative indirect uncertainty 
can have generally positive effects on their decisions.

To compare the posteriors of the individual conditions to 
each other, we  plotted the results of the primary analysis in 
the first column of Figure  7. The findings suggest that when 
viewing High-, Medium-, and Low-confidence trials, individuals’ 
crossover temperatures became increasingly more conservative 
than when no forecaster confidence was presented. The effects 
became larger when more uncertainty was communicated (e.g., 
the effect of None-High < None-Medium < None-Low). This 
result suggests that people make more conservative judgments 
when they believe uncertainty in a forecast is higher. In sum, 
these results provide evidence that participants’ judgment patterns 
are most accurately described by the increased caution prediction, 
which proposed that participants will make increasingly cautious 
judgments as more indirect uncertainty is expressed.

Figure  7 (middle column) shows the comparisons between 
High-Medium and High-Low. This analysis revealed that individuals 
made more conservative judgments when viewing the Low- and 
Medium-confidence trials compared to High-confidence trials. 
Finally, Figure 7 (right column) shows that Low-confidence trials 
elicited more conservative judgments than the Medium-confident 
trials. In sum, these analyses provide evidence that participants 
made increasingly conservative judgments when told that the 
forecasters had less confidence about the forecast.

In addition to the model’s posterior estimates for each condition, 
we  visualized the crossover temperatures for each person to 
visually assess possible individual variation present in decision 
patterns not captured in the analysis of the full data set (see 
Figure  8). To examine if some participants utilized different 
strategies, such as ignoring forecaster confidence ratings, 
we visualized four levels of changes between no forecaster confidence 
information and low forecaster confidence in the panels in Figure 8. 
Roughly half of the participants (n  =  46) showed only small 
changes across the conditions (0–1°F), with 19 showing changes 
between 1 and 2°F and 17 showing the largest changes (>2°F). 
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Interestingly, those demonstrating the largest changes seemed to 
respond dramatically to trials with low forecaster confidence. The 
crossover temperatures of these individuals increased on average, 
2.25°F from Medium- to Low-confidence trials, whereas those 
with more moderate changes (e.g., 1–2°F) increased their crossovers 
by only 0.91°F on average. Observationally, the decay is more 
rapid for those in the >2°F group. For those in the 1–2°F group, 
the decay appears to be  linear.

Several individuals in the “negative change/outliers” group had 
a negative change in either their crossovers or crossover temperatures 
>39°F (n  =  8; bottom panel of Figure  8). To investigate why 
the model produced extreme values for these participants, 
we  visualized responses for a subset of them (see Figure  9). 
Figure  9 shows that for this subset of participants, the extreme 
values are due to a combination of inconsistent responses in 
some conditions but not others. For example, Participant 1 decided 
to give blankets in the High-confidence condition at 35.5°F, which 
is inconsistent with their pattern for other levels and might have 
been an accident. Participant 2 decided to issue and withhold 
blankets when provided no information about uncertainty, a 
strategy that appears inconsistent with their decisions in the other 
conditions. Participant 3 always issued blankets regardless of the 
information in the stimuli, which may be  due to ignoring the 
confidence information or an overly cautious strategy. As a point 
of reference, we  also included Participant A, who used the more 
common increased caution decision pattern.

To determine if these individuals negatively impacted the 
overall model’s fit, we excluded them from the model and reran 
the primary analysis. The effects of the second model were 
slightly larger than the original model but not meaningfully 
different (e.g., the conclusions and magnitude of the effects did 
not change). Therefore, we decided to report the original findings 
to be conservative, and thus all the participants and all responses 
are included in the analysis reported throughout the paper.

After completing the initial experiment, participants  
also rated the trustworthiness of the High-, Medium-, and 

Low-confidence stimuli. To evaluate the impact of forecaster 
confidence on trust ratings, we  computed a Bayesian multilevel 
linear regression. Trust ratings were predicted by forecaster 
confidence as a fixed effect, and Participant was included as 
a random intercept [e.g., Trust ~ Uncertainty Communication 
+ (1| Participant)]. The model specifications included weakly 
informative priors centered at 3.5 (halfway between the Likert 
scale from 1 to 7) with an SD of 2. As seen in Figure  10, 
participants rated Low-confidence forecasts as the least 
trustworthy, Medium- as more trustworthy, and High-confidence 
forecasts as the most trustworthy.

Discussion
Regarding the predictions proposed in the experimental overview, 
the results of this study suggest that participants utilize indirect 
qualitative uncertainty when conveyed as quantile dotplots and 
forecaster confidence. In manipulations in which forecasters 
were less sure about their prediction, participants made more 
conservative judgments. These results are likely due, in part, 
to our use of quantile dotplots, which are proving to 
be consistently more effective than many other communication 
techniques of uncertainty (Kay et  al., 2016; Fernandes et  al., 
2018). The majority of studies on uncertainty visualization have 
used variants of error bars (e.g., Belia et  al., 2005; Correll 
and Gleicher, 2014; Scown et  al., 2014), which might account 
for some of the seemingly poor decision-making. Further, 
we  found that when provided with no information about 
forecaster confidence, participants’ decisions were riskier than 
optimal. In light of these findings, we  encourage visualization 
designers to consider the implications of their viewers’ decisions. 
If erring on the side of caution is desirable, as is the case 
with many hazard forecasts, then the results of this study 
suggest that communicating forecaster confidence is appropriate.

The statistical analysis provided support for the caution strategy, 
but individual response patterns also indicated that some people 
always issue or withhold blankets. It is difficult to speculate about 

FIGURE 7 | The 95% credible intervals for the comparisons between each forecast confidence condition.

https://www.frontiersin.org/journals/psychology
www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Padilla et al. Compound Uncertainty

Frontiers in Psychology | www.frontiersin.org 12 January 2021 | Volume 11 | Article 579267

FIGURE 8 | Mean estimated posterior crossover temperatures for each participant in each condition. Each line represents one participant, and the black line 
represents the optimal crossover temperature. The four panels highlight participants’ decision patterns based on the level of change from No indirect uncertainty 
information to Low-confidence trials, with the top panel highlighting participants who showed the largest impact of forecaster confidence (>2°F) and the bottom 
panel highlighting participants that had negative change or crossovers >39°F, which we considered to be outliers.
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FIGURE 9 | Sensitivity analysis of three outlier responses (Participants 1–3) and an increased caution decision pattern (Participant A). The top panel shows each 
participant’s crossover pattern for each condition. The lower panels show each participant’s raw response pattern, which indicates the choice to either issue or 
withhold aid. The black dots represent each participant’s judgment for a given temperature, and the blue bands represent credible intervals.
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what accounts for the lack of an impact of forecaster confidence. 
Some possibilities include participants ignoring the forecaster 
confidence information, not doing the task, or making extremely 
cautious decisions. Additionally, the prediction that people make 
more variable judgments with higher uncertainty has some support. 
As seen in both the posterior distributions (Figure  6) and the 
individual response patterns (Figure  8), judgments in the 
Low-confidence trials are more variable. The findings suggest 
that an increased cautiousness strategy may drive participants’ 
judgments, but when told that a forecaster has low confidence 
in a prediction, participants’ responses become more variable.

Lastly, participants’ trust ratings corresponded reasonably 
well with forecaster confidence, where Low-confidence trials 
received the lowest trust ratings, with High-confidence trials 
receiving the highest trust ratings. These results are not that 
noteworthy; however, it will be  interesting to see how trust 
ratings are impacted when variance information is also included 
in Experiment 2. Experiment 1 demonstrates the influence of 
forecaster confidence only in relation to forecasts that never 
changed in variability. In Experiment 2, we  seek to expand 
our understanding of how people reason with direct and indirect 
uncertainty by examining cases where the variability of the 
forecast changes along with the levels of forecaster confidence.

EXPERIMENT 2

In Experiment 2, we  tested whether participants can update 
their judgments to account for changes in variability shown in 
quantile dotplots (e.g., Low-variance: SD = 1°F, Medium-variance: 
SD  =  2°F, High-variance: SD  =  3°F). People may use a variety 
of strategies when attempting to reason with direct and indirect 
uncertainty. Experiment 2 aims to identify which of the following 
decision patterns most accurately describes participants’ resource 
allocation judgments with direct and indirect uncertainty.

 • Lack of effect prediction: Participants will not be affected by 
the variance manipulation, the forecast confidence manipulation, 
or both.

 • Increased variability prediction: The variability in participants’ 
judgments will increase proportionally to the variance 
displayed in the quantile dotplots and indirect uncertainty.

 • Increased caution prediction: Participants will make 
increasingly cautious judgments along with increases to the 
variance of the quantile dotplots and indirect uncertainty. For 
example, participants may increase the conservatism of their 
judgments as the quantile dotplots display distributions with 
a higher variance. Further, conditional on variance, 
participants’ judgments will be more conservative as indirect 
uncertainty increases.

 • Saliency prediction: Participants’ judgments will be impacted 
primarily by the variance information as the variance is 
communicated within the quantile dotplot and, therefore, 
likely will be  more visually salient than the forecaster 
confidence communicated in text.

 • Conflict prediction: Participants’ judgments will vary 
predictably with the variance and forecaster confidence 
manipulations, except for situations where there is a conflict 
between the direct and indirect uncertainties. For example, 
participants may consider distributions with low-variance to 
be relatively reliable. However, if participants are also told the 
forecasters have low confidence in the forecast with low 
variance, the information represented in the quantile dotplot 
(variance) and the text (forecaster confidence) are in 
opposition. In cases of conflict between direct and indirect 
uncertainty, the normative response pattern may change, and 
judgments may become more variable or overly conservative.

To examine how participants integrate direct quantitative 
uncertainty and indirect qualitative uncertainty, we  replicated 
the design of Experiment 1, but we  changed the quantile 
dotplots to include Low-, Medium-, and High-variance.

Statistical Analysis
We used the same Bayesian multilevel logistic regression approach 
as in Experiment 1 to determine the influence of forecaster 
confidence and variance on participants’ decisions to give or 
withhold blankets. The dependent variable in the model was 

FIGURE 10 | Posterior estimates of the distributions of trust ratings for each condition. Black dots represent posterior means, and black lines represent 95% 
credible intervals.
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the participants’ decision to give blankets (coded as 1) or withhold 
blankets (coded as 0). The fixed effect predictors included 
Uncertainty communication (coded such that No indirect 
uncertainty information was the referent), Variance (coded such 
that Low-variance was the referent), the interaction between 
Uncertainty Communication*Variance, and the optimal-centered 
mean temperature of the distributions in the stimuli. We centered 
temperatures around the optimal crossover temperature for each 
level of variance to account for the differences in optimal crossovers 
associated with each variance. Said another way, for dotplots 
with Low-variance, we  subtracted 32.97 from each of the 
temperatures; for dotplots with Medium-variance, we  subtracted 
33.94, and for High-variance we  subtracted 34.90. The resultant 
optimal-centered crossovers can be  interpreted as zero being 
the optimal crossover, accounting for each variance, with negative 
values as more risky and positive values as more conservative 
than optimal. Participant ids were included as random intercept 
effects. We  included the following as random slopes in the  
model: Optimal-centered Temperatures, the interaction between 

Uncertainty Communication*Variance, and the lower order terms 
of the interaction [e.g., R notation: Blanket Decision ~ Uncertainty 
Communication*Variance + Optimal-centered Temperatures + 
(Uncertainty Communication*Variance + Optimal-centered 
Temperatures | Participant)]. In line with the approach used in 
Experiment 1, the model specifications included weakly informative 
priors centered at 0 with an SD  =  2.5.

Results
The posterior distributions of the crossover temperatures are 
shown in Figure  11, which demonstrates that participants’ 
judgments became increasingly conservative when the variance 
increased, which provides support for the increased caution 
prediction (i.e., mean crossover temperature for Low- < Medium- 
< High-variance). The increased conservatism in participants’ 
resource allocation judgments is in line with the optimal crossover 
temperatures for each variance level. This finding suggests that 
participants can relatively accurately incorporate direct uncertainty 
communicated in quantile dotplots into their judgments. Consistent 

FIGURE 11 | Posterior estimates of the distributions of crossover temperatures for Low-, Medium-, and High-variance conditions, and the High-, Medium-, Low-
confidence, and No indirect uncertainty information conditions. The black dots represent the posterior means, and the black lines represent the 95% credible 
intervals around the means. The dotted lines are optimal crossover temperatures for each level of variance.
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with Experiment 1, the results indicate that participants also made 
increasingly conservative judgments when the indirect qualitative 
uncertainty increased. The impact of forecaster confidence was 
not as large as in Experiment 1, but it was in the same direction. 
Given that the participants were presented with quantile dotplots 
with highly salient differences in their SDs, they possibly focused 
more on the visual depiction of uncertainty (variance) than the 
textual expression of uncertainty (forecaster confidence). Our data 
suggest that the impacts on participants’ decisions were driven 
more by the variance manipulation than the forecaster confidence 
manipulation, adding support to the saliency prediction.

Even though the effect of variance was dominant in Experiment 
2, our results suggest that people incorporated the forecaster 
confidence information into their judgments, which is revealed 
in both main effects and two reliable interactions in the model 
results. Figure  12 shows the mean posterior distributions and 
credible intervals for all the comparisons in the model. For Low-, 
Medium- and High-variance, participants made reliably more 
conservative judgments with Low forecaster confidence compared 
to No communication of confidence (see Figure 12 left column). 
For High-variance, participants also made more conservative 
judgments with Medium and High forecaster confidence compared 
to No communication of confidence. Experiment 2 suggests that 
participants’ judgments were influenced by forecaster confidence 
ratings but not as pervasively as in Experiment 1.

We also found two reliable interactions in the model. The 
first is between No communication vs. Medium confidence 
and Low-variance vs. High-variance (b  =  0.94, CI  =  [0.39, 
1.49]; superscript 1) in Figure  12. This interaction suggests 
that for High-variance, participants made more conservative 
judgments with Medium forecaster confidence compared to 
when no uncertainty was communicated (Figure 12, superscript 
1b). In contrast, for Low-variance, we  did not observe such 
a difference between No communication and Medium forecaster 

confidence (superscript 1a). The second interaction (b  =  0.72, 
CI =  [0.09, 1.37]) revealed that for Low-variance, conservatism 
showed a small increase from No communication of uncertainty 
to Low forecaster confidence (Figure  12, superscript 2a), and 
this relative increase in conservatism was larger for High-
variance (Figure  12, superscript 2b). In sum, the interactions 
suggest that for High-variance, when participants received no 
information about forecaster confidence, they made riskier 
decisions than optimal – further, the increased conservatism 
from the No communication of uncertainty to Medium and 
Low forecaster confidence trials was greater for High-variance 
than for Low-variance.

As in Experiment 1, we  also visualized the crossover 
temperatures for each participant to evaluate how an individual’s 
judgments changed across the conditions. Before visualizing 
Figure  13, we  investigated outliers, including participants who 
did not have crossovers and those with crossover values >39°F 
or <32°F. We  found that the outlier crossovers were due to 
the same issues detailed in Experiment 1, illustrated in Figure 9. 
These participants had only one response (e.g., always giving 
or withholding aid), made random patterns of decisions, or 
seemed to make an accidental click. The numbers of participants 
in Experiment 2 who had no crossovers in each condition 
for Low-variance (None = 6.6%, High = 4.4%, Medium = 2.2%, 
Low = 7.7%) and Medium-variance (None = 3.3%, High = 4.4%, 
Medium = 2.2%, Low = 7.7%) were relatively similar. However, 
for the High-variance trials, participants made more outlier 
responses when told that the forecasters had Low confidence 
(None  =  5.5%, High  =  8.8%, Medium  =  8.8%, Low  =  14.4%). 
The higher number of outliers for the High-variance condition 
with Low forecaster confidence provides evidence for the lack 
of effect prediction. Again, assigning causality to such data is 
pure speculation, but it is interesting that outliers increased 
for the condition with the highest combined uncertainty.

FIGURE 12 | The 95% credible intervals for the comparisons between each forecast confidence condition.
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We reran the primary model for Experiment 2 without two 
participants who never changed their judgments across any of 
the conditions, and the findings did not meaningfully differ 
from the results of the previous report. As seen in Figure  13, 
roughly one-third of participants showed small changes (0–1°F) 
from No Communication of forecaster confidence to Low 
forecaster confidence across each variance condition (Low = 31%, 
Medium  =  32%, High  =  32%). Fewer participants showed 
changes between 1 and 2°F (Low  =  16.6%, Medium  =  13.3%, 
High  =  16.6%), and the fewest showed changes >2°F 

(Low  =  11.1%, Medium  =  13.3%, High  =  18.8%). Surprisingly, 
a large number of people showed a risky response pattern 
(e.g., a negative value when comparing their crossover temperature 
for No communication to Low-confidence; Low  =  41%, 
Medium = 41%, High = 32%). These negative response patterns 
were not entirely due to outlier responses, which we  validated 
by visualizing individuals’ crossovers after removing outliers 
for each level of variance, as seen in Figure  13. We  defined 
outliers as crossover values <32 or >39°F, which were removed 
only for Figure  13 (number of outliers removed; Low  =  16, 

FIGURE 13 | Mean posterior crossover temperatures for each participant in each condition. Each line represents one participant, and the black line represents the 
optimal crossover temperature for each variance condition. The three columns represent the variance conditions, and the four rows highlight participants’ decision 
patterns based on the level of change from No indirect uncertainty information (None) for Low-confidence trials.

https://www.frontiersin.org/journals/psychology
www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Padilla et al. Compound Uncertainty

Frontiers in Psychology | www.frontiersin.org 18 January 2021 | Volume 11 | Article 579267

Medium  =  14, High  =  23). Response patterns in Experiment 
2 were more variable than in Experiment 1. Further, note that 
the spread of response patterns in Figure  13 is larger for High 
> Medium > Low across all conditions. The additional variability 
in response patterns, which corresponds to the increases in 
variance, provides support for the increased variability prediction.

Lastly, we  also analyzed how participants’ ratings of trust 
were influenced by variance and forecaster confidence. 
We computed a Bayesian multilevel linear regression, where trust 
ratings were predicted by forecaster confidence and variance as 
a fixed effect, along with their interaction. Participant ids were 

included as a random intercept, and the interaction of Uncertainty 
Communication and Variance was included as a random slope 
[e.g., Trust ~ Uncertainty Communication*Variance + (Uncertainty 
Communication*Variance | Participant)]. The model specifications 
included weakly informative priors centered at 3.5 with an 
SD = 2. As seen in Figure 14, participants rated Low-confidence 
forecasts as the least trustworthy, Medium- as more trustworthy, 
and High-confidence forecasts as the most trustworthy. These 
findings exhibit the same pattern as in Experiment 1.

Interestingly, the level of variance had little effect on 
participants’ interpretation of trust. We  found no meaningful 

FIGURE 14 | Posterior estimates of the distributions of trust ratings for each condition. The black dots represent posterior means, and black lines represent 95% 
credible intervals.
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main effects of variance in the model output. Two minimal 
interactions (Low- vs. High-confidence x Low- vs. Medium-
variance; CI [0.05, 0.61] and Low vs. Medium-confidence x 
Low- vs. Medium-variance; CI [0.02, 0.52]) do not warrant 
further investigation. This finding suggests that when considering 
trust, qualitative statements about forecaster confidence may 
impact trust more than quantified variability in a model that 
is shown visually. Recent prior work finds that linguistic 
expressions of direct uncertainty (e.g., “484,000 people in the 
UK were unemployed …there is some uncertainty around this 
estimate, it could be  somewhat higher or lower”) evoke less 
trust than numeric expressions (e.g., “…484,000 people in the 
UK were unemployed…minimum 1,413,000 to maximum 
1,555,0000”; van der Bles et  al., 2020). Similarly, the current 
findings show that linguistic expressions of forecaster confidence 
have a larger impact on trust ratings than direct 
quantitative uncertainty.

Discussion
The critical finding from Experiment 2 was that participants 
made more conservative judgments when both the direct 
quantitative uncertainty (variance) and indirect qualitative 
uncertainty (forecaster confidence) were increased. Consistent 
with Experiment 1, judgments made from no expression of 
forecaster confidence were the riskiest, and communicating 
more indirect and direct uncertainty led to more conservative 
judgments. Of particular interest is the finding that when 
participants did not receive forecaster confidence information 
and viewed quantile dotplots with High-variance, their judgments 
were riskier than optimal. These findings suggest that applications 
where forecasts have high variability, such as long-term future 
forecasts of climate predictions, could benefit from the addition 
of qualitative uncertainty estimates.

Between the two types of uncertainties, direct quantitative 
uncertainty (variance) had a more substantial impact on 
participants’ resource allocation decisions. A variety of reasons 
explain why the direct quantitative uncertainty may have had 
a larger impact on participants’ judgments, including that direct 
uncertainty was shown in the visualization, and the indirect 
uncertainty was shown in the text. Participants might have 
spent longer considering the direct uncertainty because the 
quantile dotplot may have been more visually salient, which 
could explain the prominence of the direct uncertainty in their 
judgments. Future work could identify which information 
participants focused on using eye-tracking measures.

Additionally, we  found more variability between and within 
participants’ judgments in Experiment 2 compared to Experiment 
1. We  do not know if the increased variability is due to the 
complication of reasoning with two types of uncertainty or if 
the experiment was overwhelming for the participants as the 
information varied on multiple dimensions. Interestingly, some 
of the most variable responses were in the highest combined 
uncertainty condition (High-variance + Low forecaster 
confidence). Additional research is needed to carefully examine 
the source of the increased variability in Experiment 2.

The impact of forecaster confidence was not as large as in 
Experiment 1, and we  saw less discrimination between the 

confidence conditions. The pattern, however, was in the same 
direction as in Experiment 1. For all variance levels, the 
Low-confidence conditions elicited more conservative judgments 
than when No forecaster confidence was presented. Distributions 
with High-variance and Low, Medium, and High forecaster 
confidence elicited more conservative judgments than trials 
with High-variance and No information about forecaster 
confidence. The reduction in the effect of forecaster confidence 
may be  due to the salience of the variance information, or 
that participants were more confused by the various types of 
information presented. Given that individuals’ response patterns 
were considerably more variable in Experiment 2 compared 
to Experiment 1, participants may have been more overwhelmed 
with the multiple types of uncertainties. More work is needed 
to determine the source of the variability in participants’ 
response patterns in Experiment 2.

GENERAL DISCUSSION

The two experiments presented in this paper provide new 
evidence that people can and do utilize both direct quantitative 
and indirect qualitative uncertainty in resource allocation 
decisions. In the first experiment, we  found that participants 
made increasingly conservative judgments when they learned 
the forecasters had less confidence in nighttime low-temperature 
forecasts. In the second experiment, we  found that when 
presented with both forecaster confidence and forecast variance 
represented in quantile dotplots, participants incorporated both 
types of information into their decisions. When participants 
were shown distributions of forecasted nighttime low 
temperatures that had higher variance, they made more 
conservative judgments, and when told the forecasters were 
less sure about the forecasts, participants also made more 
conservative judgments. We  found that the variance in the 
visualized distributions had a more substantial effect on 
participants’ resource allocation judgments than the forecaster 
confidence information. Together, these studies provide insights 
into how people conceptualize both direct and indirect 
uncertainty within a single forecast using best practices in 
visualization research.

The presented results propose that it is possible for people 
to reason with multiple types of complex uncertainty information, 
which is a human reasoning capacity that has had inconsistent 
empirical support. Science communicators report being worried 
that uncertainty may be too complicated for the average person 
to understand (Fischhoff, 2012; Gustafson and Rice, 2019; 
Hullman, 2019). Various studies demonstrate that when presented 
with uncertainty in some textual formats (e.g., Kahneman and 
Tversky, 1979, 1982; Baron, 1997) and in some visualizations 
(e.g., Belia et  al., 2005; Joslyn and LeClerc, 2013; Correll and 
Gleicher, 2014; Padilla et  al., 2015, 2020; Ruginski et  al., 2016; 
Hofman et  al., 2020), people make errors that reveal their 
misunderstandings of the data. Most famously, Belia et  al. 
(2005) found that highly educated scientists and medical 
professionals misunderstand how to interpret error bars, which 
are one of the primary ways researchers communicate statistical 
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results in their disciplines. Further, Joslyn and LeClerc (2013) 
found that participants misunderstand error bars for a nighttime 
low-temperature forecast, and the misunderstanding remained 
even when the authors included a key that described how to 
interpret the visualization. Other work finds that 
misunderstandings of uncertainty visualizations persist after 
extensive training on how the scientists created the visualizations 
and how to interpret them correctly (Boone et  al., 2018; 
Padilla et  al., 2020).

The substantial body of research demonstrating how difficult 
it can be  to reason with one form of uncertainty makes the 
current finding that people can effectively make decisions with 
two types of uncertainty more noteworthy. In an extension of 
perspectives proposed by Gigerenzer and Hoffrage (1995), 
we suggest that visualizations can support reasoning with highly 
complex data when the visualizations are designed using intuitive 
formats and best visualization practices. In particular, quantile 
dotplots have produced consistently positive results when used 
to express uncertainty in distributional data (Kay et  al., 2016; 
Hullman et al., 2017; Fernandes et al., 2018; Greis et al., 2018).

This work provides promising evidence that people can 
relatively accurately incorporate multiple types of uncertainty 
into their judgments, but this research has some caveats and 
remaining open questions. In the present studies, a confound 
exists between the communication format and different types 
of uncertainties, making it impossible to attribute the current 
findings to the communication format or uncertainty type 
alone. For example, additional research is needed to determine 
if participants were more influenced by direct quantitative 
uncertainty because it was visually displayed in quantile dotplots 
or because quantitative uncertainty is more influential in their 
decisions. A similar confound exists for the interpretation of 
the trust ratings. For example, it is unclear if levels of direct 
uncertainty do not influence participants’ beliefs about trust 
or if this finding is due to the direct uncertainty being expressed 
with a visualization.

Future research may wish to expand on the variety of 
limitations to the current studies. Scholars have documented 
issues with the categorical expert expressions of confidence 
used by the IPCC (Budescu et  al., 2009, 2012) and others (for 
review, see O’Hagan et  al., 2006). Budescu et  al. (2012) found 
that using a dual categorical-numeric scale can decrease the 
variability in participants’ interpretations of categorical forecaster 
confidence. We  elected to adhere to the definition of indirect 
uncertainty defined in the background section (i.e., indirect 
uncertainty cannot be quantified explicitly; Der Kiureghian and 
Ditlevsen, 2009), which is why we used the categorical expression 
of forecaster confidence rather than the approach proposed by 
Budescu et  al. (2012). We  considered this to be  a first step 
in determining if people could reason with multiple forms of 
uncertainty from a single source, and, therefore, we  opted not 
to complicate the stimuli with both categorical and numeric 
expressions of forecaster confidence. Further, future work may 
want to test alternative methods for communicating forecaster 
confidence in both text and visualizations. Some of the additional 
variability observed in Experiment 2 may be  due to the 
experiment’s within-subjects design. We selected a within-subjects 

design explicitly to determine how participants’ judgments 
changed in response to our manipulations, but we acknowledge 
this design choice has pros and cons. We presented participants 
with many stimuli that had various manipulations, which may 
have contributed to the increase in variability in Experiment 
2. Researchers may want to consider a between-subjects  
design to determine if increased variability in judgments is 
genuinely a property of how people reason with direct and 
indirect uncertainty.

Beyond the limitations within the design of the study, 
we  need to consider the ecological, external, and construct 
validity of visualization research (Padilla, 2018). Ecological 
validity is how closely the experiment matches real-world tasks 
(Chaytor and Schmitter-Edgecombe, 2003). In the current 
study, we  selected the task’s context based on a real decision 
scenario in the humanitarian sector. However, the costs and 
payoffs were based on prior uncertainty visualization research, 
which does not reflect the real-world context. When gains 
and losses are changed, people may demonstrate more or less 
of an effect than documented in the current work. Considering 
external validity (e.g., the capacity to generalize the finding 
to other contexts and groups; Berkowitz and Donnerstein, 
1982), we  argue that most people will demonstrate the same 
decision pattern found here. Participants on Amazon’s Mechanical 
Turk are diverse and have a range of skill sets, which offers 
an appropriate baseline. However, individuals with more expertise 
in visualization, statistics, or crisis management may employ 
different strategies. Further, we  suspect that these findings 
will be  consistent with future visualization studies but might 
not directly simulate real-world contexts, which may have 
additional constraints, such as time pressure and distraction. 
Finally, in terms of construct validity (e.g., the ability of the 
work to measure what it claims to measure; Cronbach and 
Meehl, 1955), we  took measures to ensure that our findings 
are an accurate reflection of how people reason with direct 
quantitative uncertainty and indirect qualitative uncertainty. 
For example, participants completed the same task numerous 
times to ensure test-retest reliability. In summary, more empirical 
work is needed to determine if the current findings can 
be  generalized to real-world contexts, with viewers of various 
expertise and task constraints, but we  argue this work has 
high construct validity.

The current work analyzed the results of our study 
statistically, and our future work aims to uncover potential 
latent processes that guide individuals’ decision strategies 
when reasoning with direct and indirect uncertainty. We seek 
to extend the current study by developing a mathematical 
framework (e.g., Mendoza and Gutiérrez-Peña, 2010; Aliev, 
2013) to model the direct and indirect uncertainty decision-
making process. Individuals likely develop and implement 
implicit strategies when making decisions with direct and 
indirect uncertainty, and variations in these strategies affect 
each decision’s utility (i.e., the decision’s psychological and 
monetary reward structure). Our future work seeks to 
incorporate decision theory to identify the optimal process 
for incorporating direct and indirect uncertainty to maximize 
a participant’s utility. Modeling our study in this way is fitting 
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and can provide additional insight into such processes that 
statistical analyses alone may not permit. Decision theory 
would thus allow for the robust and detailed modeling of 
mental integration of direct and indirect uncertainty and 
would give us insight into how individuals use their 
conceptualization of both uncertainties to make decisions.

CONCLUSION

Reasoning with uncertainty is challenging, and making 
decisions with multiple forms of uncertainty increases the 
complexity of an already difficult task. Nonetheless, to ensure 
accuracy and transparency, scientists in disciplines that produce 
forecast models require a method for communicating 
uncertainty that can be  quantified directly and uncertainty 
associated with the accuracy of their models. Before this 
work, we  had no clear indication of how people mentally 
combine visual and textual representations of direct and 
indirect uncertainty within a forecast. Our work’s findings 
provide empirical evidence that participants update their 
judgments in the direction predicted by both qualitative 
confidence information (e.g., becoming more conservative 
when the forecaster confidence is low) and quantitative 
uncertainty (e.g., becoming more conservative when the 
variance is increased). Our results lead us to recommend 
that forecasters present qualitative expressions of model 
confidence whenever possible alongside quantified uncertainty. 
We  propose that the apprehension of communicating 
uncertainty in science can be assuaged if science communicators 
use best practices in their uncertainty communication.
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